Abstract

BackgroundThe current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.MethodsThe anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.ResultsThe data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.ConclusionThis work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity.

Highlights

  • The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders

  • essential oil (EO) from Citrus species denotes a wide spectrum of action given that the EOs were active in experimental models sensitive to both anxiolytic and antidepressant drugs. Considering this background, the aim of the present work was to investigate the putative mechanism of the anxiolytic-like effect and identify any neurochemical changes in specific cerebral areas that result from acute treatment with C. aurantium EO

  • EO composition Table 1 shows the results from the gas chromatography coupled with mass spectrometry analysis of the C. aurantium EO

Read more

Summary

Introduction

The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Since the 1960s, the benzodiazepines, which improve GABAergic neurotransmission, have been used extensively to treat anxiety disorders. These compounds have shown a clear efficacy, leading to their becoming the most widely prescribed drugs worldwide [1]. Many patients fail to adequately respond to treatment [2], and the side effects than benzodiazepines and a more immediate onset of action than azapirones. Antidepressants cause a robust set of side effects, such as weight gain, constipation, memory disorders, and sleep and sexual disorders, which vary in frequency and intensity among the different classes of antidepressants [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call