Abstract

Clinical and model studies indicate that low nitric oxide (NO) bioavailability due in part to profound hypoargininemia contributes to cerebral malaria (CM) pathogenesis. Protection against CM pathogenesis may be achieved by altering the diet before infection with Plasmodium falciparum infection (nutraceutical) or by administering adjunctive therapy that decreases CM mortality (adjunctive therapy). This hypothesis was tested by administering citrulline or arginine in experimental CM (eCM). We report that citrulline injected as prophylaxis immediately post infection (PI) protected virtually all mice by ameliorating (i) hypoargininemia, (ii) urea cycle impairment, and (iii) disruption of blood brain barrier. Citrulline prophylaxis inhibited plasma arginase activity. Parasitemia was similar in citrulline- and vehicle control-groups, indicating that protection from pathogenesis was not due to decreased parasitemia. Both citrulline and arginine administered from day 1 PI in the drinking water significantly protected mice from eCM. These observations collectively indicate that increasing dietary citrulline or arginine decreases eCM mortality. Citrulline injected ip on day 4 PI with quinine-injected ip on day 6 PI partially protected mice from eCM; citrulline plus scavenging of superoxide with pegylated superoxide dismutase and pegylated catalase protected all recipients from eCM. These findings indicate that ameliorating hypoargininemia with citrulline plus superoxide scavenging decreases eCM mortality.

Highlights

  • A hallmark of blood-stage Plasmodium falciparum (Pf) infection in humans is the development of profound hypoargininemia leading to impaired nitric oxide (NO) bioavailability as measured by reactive hyperemia [1,2,3,4]

  • Arginine is converted into experimental CM (eCM)-protective NO by nitric oxide synthase (NOS) but may be converted into ornithine by arginase [10] (S1A Fig). ypoarginemia is reported during eCM9, which may be due to elevated activity of arginase or NOS

  • The inability of infused low dose arginine to restore NO bioavailability in severely ill malaria patients indicates that additional factors are preventing the restoration of plasma arginine levels and the coupling of NOS enzyme with cationic amino acid transporter (CAT) [34]

Read more

Summary

Introduction

A hallmark of blood-stage Plasmodium falciparum (Pf) infection in humans is the development of profound hypoargininemia leading to impaired nitric oxide (NO) bioavailability as measured by reactive hyperemia [1,2,3,4]. Citrulline protects against cerebral malaria additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of the author are articulated in the ‘author contributions’ section

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.