Abstract

Parkinson disease is a neurodegenerative disorder distinguished by dopaminergic shortage in the striatum and the accumulation of α-synuclein neuronal aggregates in the brains of patients. Since, there is no accurate treatment available for Parkinson disease, researches are designed to alleviate the pathognomonic symptoms such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Accordingly, a number of compounds have been reported to inhibit these pathognomonic symptoms. In this study, we have assessed the neuroprotective potential of citronellol against 6-OHDA-induced neurotoxicity in SH-SY5Y cells. The results found that citronellol treatment effectively hindered the cell death caused by 6-OHDA and thereby maintaining the cell viability in SH-SY5Y cells at 50µg/mL concentration. As expected, the citronellol treatment significantly reduced the 6-OHDA-induced secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), which was obtained through ELISA technique. Similarly, citronellol hindered the 6-OHDA-induced oxidative stress by lowering the intracellular ROS and NO level and MDA leakage along with increased expression of SOD level in SH-SY5Y cells. The JC-1 staining showed that 6-OHDA increased the number of green fluorescent dots with ruptured mitochondrial membrane potential, while citronellol increased the amount of red fluorescent, showing the rescue potential against the 6-OHDA-induced mitochondrial dysfunction. Furthermore, citronellol hampered the 6-OHDA-induced apoptosis via the suppression of Bcl-2/Bax pathway. The western blotting results hypothesized that citronellol rescued SH-SY5Y cells from 6-OHDA-induced neurotoxicity via modulating ROS-NO, MAPK/ERK, and PI3K/Akt signaling pathways. However, further clinical trials are required to verify the anti-Parkinson efficacy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.