Abstract

The present study investigated the anticancer activity of citronellol (CT) by analyzing the mitochondrial-mediated activation of apoptosis in MCF-7 and MDA-MB-231 human mammary tumor cell lines. Cytotoxicity, cell growth, and apoptosis were determined by measuring reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔΨm), DNA damage, and changes in morphology and expression of proteins involved in apoptosis in MCF-7 and MDA-MB-231 cells. Our results indicate that CT induces apoptosis as evidenced by the loss of cell viability, increase ROS generation, altered ΔΨm, and enhanced DNA damage. Further, CT inhibits Bcl-2 expression with the up-regulation of Bax, caspase-9, and -7 in both cancer cells. CT induces apoptosis in MCF-7 human mammary tumor cells by inducing oxidative damage and modulating the expression of various pro and anti-apoptotic proteins. Hence, CT might be a potential therapeutic agent for the treatment of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call