Abstract
BackgroundCitrobacter amalonaticus Y19 is a good biocatalyst for production of hydrogen (H2) from oxidation of carbon monoxide (CO) via the so-called water–gas-shift reaction (WGSR). It has a high H2-production activity (23.83 mmol H2 g−1 cell h−1) from CO, and can grow well to a high density on various sugars. However, its H2-production activity is expressed only when CO is present as an inducer and in the absence of glucose.ResultsIn order to avoid dependency on CO and glucose, in the present study, the native CO-inducible promoters of WGSR operons (CO dehydrogenase, CODH, and CODH-dependent hydrogenase, CO-hyd) in Y19 were carefully analyzed and replaced with strong and constitutive promoters screened from Y19. One engineered strain (Y19-PR1), selected from three positive ones after screening ~10,000 colonies, showed a similar CO-dependent H2-production activity to that of wild-type Y19, without being affected by glucose and/or CO. Compared with wild-type Y19, transcription of the CODH operon in Y19-PR1 increased 1.5-fold, although that of the CO-hyd operon remained at a similar level. To enhance the activity of CO-Hyd in Y19-PR1, further modifications, including an increase in gene copy number and engineering of the 5′ untranslated region, were attempted, but without success.ConclusionsConvenient recombinant Y19-PR1 that expresses CO-dependent H2-production activity without being limited by CO and glucose was obtained.
Highlights
Citrobacter amalonaticus Y19 is a good biocatalyst for production of hydrogen (H2) from oxidation of carbon monoxide (CO) via the so-called water–gas-shift reaction (WGSR)
Several microorganisms perform the WGSR, their use is restricted due to various challenges encountered in cell growth and biocatalytic activity
The regulatory region of the operons for the two-enzyme complexes was carefully analyzed and replaced by several constitutive promoters screened from Y19
Summary
Citrobacter amalonaticus Y19 is a good biocatalyst for production of hydrogen (H2) from oxidation of carbon monoxide (CO) via the so-called water–gas-shift reaction (WGSR). It has a high H2-production activity (23.83 mmol H2 g−1 cell h−1) from CO, and can grow well to a high density on various sugars. Several microorganisms perform the WGSR, their use is restricted due to various challenges encountered in cell growth and biocatalytic activity. Most of these microorganisms require high temperatures and lavish nutrients
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.