Abstract

A novel citric acid (CA) modulation strategy was developed to prepare strong magnetic CoFe-LDH/CoFe2O4-C composites, which were combined with dielectric barrier discharge (DBD) to effectively degrade levofloxacin (LEV) in wastewater. Kelvin probe force microscopy (KPFM) test showed that CA modulation facilitated a more powerful internal electric field to drive rapid charge migration. The addition of CoFe-LDH/CoFe2O4-C increased LEV degradation from 78.2% to 98.6% and reduced energy efficiency from 24.77 to 8.93 kWh m–3. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed the CoFe-LDH/CoFe2O4-C could take full advantage of the active substances originating from DBD plasma and highlighted the role of 1O2 and ·O2–. Density functional theory (DFT) calculation revealed that the heterojunction can not only drive faster electron migration but also reduce the energy barrier of O3 decomposition. Possible degradation pathways for LEV were proposed. This study opened up a new avenue for the synthesis of applicable catalysts for plasma systems in water treatment areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.