Abstract
Colloidal suspensions of silver nanoparticles (AgNPs) with surface modified by capping with citrate ions were synthesized by chemical reduction method. Transmission and Scanning Electron Microscopy as well as darkfield Optical Microscopy provided information on the nanoparticle morphology, with fine symmetrical grains and log-normal fitted size distribution. Small Angle X-ray Scattering method allowed theoretical confirmation of colloidal silver nanoparticle fine granularity, based on measurements in the native fluid sample. UV–Vis spectrophotometry allowed studying the Localized Surface Plasmon Resonance band versus the stability of the citrate-AgNP sample after storage and after UV-C exposure. The colloidal AgNP impact on Phanerochaete chrysosporium environmental microorganisms was studied by specific biochemical investigations. Silver released from the colloidal suspension of AgNPs was supposed to induce changes in some antioxidant enzymes and in some enzymes of Krebs’ cycle. Catalase activity was moderately changed (an increase with over 50%) as well as superoxide dismutase activity, while the diminution of the activities of four dehydrogenases synthesized in the fungus mycelium was emphasized also: a decrease with about 60% for malate dehydrogenase, with over 50% for isocitrate dehydrogenase and succinate dehydrogenase and with about 40% for alpha-ketoglutarate dehydrogenase. These findings suggested the nano-toxicological issues of citrate-AgNPs impact on the environmental beneficial microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.