Abstract

Photocatalysis is a clean and efficient process pursued under light irradiation with a suitable photocatalyst to degrade a contaminant. We report citrate functionalization of silver nanoparticles (SNPs) for effective immobilization on cellulosic fabric. The porous cellulosic matrix could be explored as microfiltration membranes for the photocatalytic degradation of organic dyes in the aqueous media. Where valid, the citrate functionalized SNPs and the treated cellulose fabrics were considered for optical, structural, surface chemical, thermal, textile, flowability, photocatalytic, and antibacterial attributes. The SNPs expressed the bandgap energy of 2.56 and 2.43 eV and Urbach energy of 3.38 and 5.21 eV before and after functionalization with the citrate moieties, respectively. The liquid chromatographic and FTIR analyses indicated that the crystal violet (CV) organic dye has been successfully photodegraded to environmentally safer and nontoxic species on passing the contaminated water through the SNPs-treated cellulosic filter. The spectroscopic data also supported the said outcomes. The results demonstrated that the citrate-SNPs-treated cellulose could be efficiently employed as antibacterial photocatalytic membranes for degrading organic dyes in the aqueous media for multiple cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call