Abstract

Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.