Abstract
IntroductionCitrate-phosphate-dextrose (CPD) is the most common anticoagulant for blood product storage in the United States. It was developed to prolong shelf life, though there is little research regarding its impact on function following transfusion. We used flow cytometry (FC), thromboelastography (TEG), and a clot contraction assay called the zFlex platform to measure platelet activation and global clot formation in blood samples anticoagulated with either CPD or in a standard blue top citrate (BTC) tube. MethodsSamples were obtained through venipuncture of the antecubital fossa from healthy donors who had not recently taken antiplatelet medication. Samples for FC analysis were spun to obtain platelet-rich plasma, while TEG and zFlex utilized recalcified whole blood. ResultsMean fluorescence intensity for CD62p (P-selectin, marker of platelet activation) in baseline samples was equal, while mean fluorescence intensity in samples activated with thrombin receptor activating peptide was higher in CPD than BTC (65,814 ± 4445 versus 52,483 ± 5435, P = 0.007). TEG results demonstrated similar maximum amplitude for CPD (62.7 ± 1.8 mm versus 61 ± 1 mm) (P = 0.33), though reaction time and kinetics time were significantly longer in CPD versus BTC. CPD R-time: 7.9 ± 0.4 min versus BTC: 3.8 ± 0.4 (P < 0.001). CPD K-time: 2.2 ± 0.2 min versus BTC: 1.6 ± 0.1 min (P < 0.001). Clot contraction strength was not different between the two groups on zFlex: CPD 4353 ± 6 = 517 μN versus BTC 4901 ± 390 μN (P = 0.39). ConclusionsOur findings suggest that CPD does not affect platelet function (minimal difference on FC and no difference in ultimate clot strength, which is ∼80% due to platelet function) but may alter clot dynamics by attenuating thrombin generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.