Abstract

Because of its ability to inhibit the growth of calcium oxalate monohydrate (COM) crystals, citrate plays an important role in preventing the formation of kidney stones. To determine the mechanism of inhibition, we studied the citrate-COM interaction using a combination of microscopic and simulation techniques. Using scanning confocal interference microscopy, we found that addition of citrate preferentially inhibits crystal growth in <100> and, to a lesser extent, <001> directions, suggesting that citrate adsorbs to the faces of COM in the order {100} > {121} > {010}. Scanning electron microscopy showed that the resulting crystals are plate shaped, with large {100} faces and rounded ends. Molecular-dynamics simulations predicted, however, that citrate interacts with the faces of COM in a different order, i.e. {100} > {010} > {121}. Our simulations showed that citrate molecules align with the rows of Ca<sup>2+</sup> ions on the {010} face but do not form close contacts, presumably because of electrostatic repulsion by the carboxylate groups that project from the Ca<sup>2+</sup>-rich plane. We propose that this weak interaction is responsible for citrate’s limited inhibition of COM growth in <010> directions. Overall, these findings indicate that electrostatic interactions with the Ca<sup>2+</sup>-rich faces of COM crystals are responsible for the growth-modulating properties of citrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.