Abstract

Abstract A simple strategy for the synthesis of water soluble, luminescent, citrate-capped CdSe quantum dots (Q-CdSe) and their applications to selective detection of silver ions are described. The steady state photoluminescence (PL) spectra show single, narrow emission band at ca. 554 nm without any contribution from the trap states. The effect of various ions including physiologically important metal ions (viz. K+, Ca2+, Fe3+, Zn2+, Mg2+, Mn2+, Cu2+, Ag+, Pb2+ and Cd2+), on the PL intensity of citrate-capped Q-CdSe has been studied. Among these, selective luminescence quenching with Ag+ ion was found to be predominant. Under the optimum conditions, the response was linear between 1.7 and 18 μM. The quenching constant KSV was found to be ca. 3.4 × 105 M−1. The mechanism of photoluminescence quenching of Q-CdSe by metal ions (Ag+) is also discussed. Based on these studies, the potential use of Q-CdSe as a luminescent probe for the selective detection of silver ion has been proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.