Abstract

The pathogenesis of focal segmental glomerulosclerosis (FSGS) is considered to be associated with oxidative stress, mononuclear leukocyte recruitment and infiltration, and matrix production and/or matrix degradation, although the exact etiology and pathogenic pathways remain to be determined. Establishment of a pathogenesis-based therapeutic strategy for the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in Litsea cubeba , a traditional Chinese herbal medicine, can inhibit oxidant activity, macrophage and NF-κB activation. In the present study, first, we used a mouse model of FSGS with the features of glomerular epithelial hyperplasia lesions (EPHLs), a key histopathology index of progression of FSGS, peri-glomerular inflammation, and progressive glomerular hyalinosis/sclerosis. When treated with citral for 28 consecutive days at a daily dose of 200 mg/kg of body weight by gavage, the FSGS mice showed greatly reduced EPHLs, glomerular hyalinosis/sclerosis and peri-glomerular mononuclear leukocyte infiltration, suggesting that citral may be renoprotective for FSGS and act by inhibiting oxidative stress and apoptosis and early activating the Nrf2 pathway. Meanwhile, a macrophage model involved in anti-oxidative and anti-inflammatory activities was employed and confirmed the beneficial effects of citral on the FSGS model.

Highlights

  • Focal segmental glomerulosclerosis (FSGS) manifests with heavy proteinuria in association with focal, but progressive, glomerular sclerosis in the kidney [1,2,3]

  • Light microscopy showed that characteristic glomerular epithelial hyperplasia lesions (EPHLs), suggestive of progression of FSGS lesions, glomerular hyalinosis/sclerosis and peri-glomerular inflammation were both seen at days 14 and 28 in FSGS+vehicle mice, but these renal lesions were greatly decreased in FSGS+Citral mice (Figure 1D)

  • Our study demonstrated that Citral, a purified major active component of Litsea cubeba, had renoprotective effects in a FSGS mouse model, including preventing the kidney from glomerular EPHLs, a key histopathology index of progression of FSGS, and from glomerular hyalinosis/sclerosis and mononuclear leukocyte infiltration

Read more

Summary

Introduction

Focal segmental glomerulosclerosis (FSGS) manifests with heavy proteinuria in association with focal, but progressive, glomerular sclerosis in the kidney [1,2,3]. Corticosteroids and other immunomodulatory agents are commonly used to treat these patients [6,7], they result in an unsatisfactory outcome in terms of progression of renal inflammation and fibrosis [8,9] and have various side-effects [10,11]. The etiology and pathogenesis of FSGS are poorly understood, its pathogenic pathways may involve oxidative stress [13,14,15], inflammation associated with mononuclear leukocyte recruitment [16,17,18], and promotion of matrix production and/or degradation [19]. Nrf has been shown to regulate cellular production of antioxidants and protects against oxidative stress in chronic renal failure [28,29], renal inflammation [30] and fibrosis [31,32]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call