Abstract

For combating life-threatening infections caused by Candida albicans there is an urgent requirement of new antifungal agents with a targeted activity and low host cytotoxicity. Manipulating the mechanistic basis of cell death decision in yeast may provide an alternative approach for future antifungal therapeutics. Herein, the effect of an active citral derivative (Cd1) over the physiology of cell death in C. albicans was assessed. The viability of C. albicans SC5314 cells was determined by broth microdilution assay. The crucial morphological changes and apoptotic markers in Cd1-exposed yeast cells were analyzed. Subsequently the results confirmed that Cd1 arrested growth and caused death in yeast cells. Furthermore, this molecule inhibited antioxidant enzymes that resulted in production of reactive oxygen species. DNA fragmentation and condensation, phosphatidylserine exposure at the outer leaflet of cell membrane, mitochondrial disintegration as well as accumulation of cells at G2/M phase of the cell cycle were recorded. Altogether, this derivative induced apoptotic-type cell death in C. albicans SC5314.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.