Abstract

Marine waterbirds have shown variable trends in abundance over the past four decades with some species displaying steep declines along the Pacific coast from British Columbia through California. One of the most dramatic changes has been that of western grebes (Aechmophorus occidentalis) in the Salish Sea. This region was a former core of the species wintering distribution but they have become increasingly rare prompting calls for conservation action. A more thorough understanding of this situation requires the analysis of trends at broader geographic scales as well as a consideration of mechanisms that might have led to a change in abundance. We used hierarchical modeling with a Bayesian framework applied to 36 years of Audubon Christmas Bird Count data to assess continent-wide and regional population trends in western and Clark’s grebes (A. clarkii) from 1975 to 2010. Our results show that the North American wintering population of Aechmophorus grebes decreased by ∼52% after 1975, but also that western grebes displayed strongly opposing regional patterns. Abundance decreased by about 95% over 36 years in the Salish Sea but increased by over 300% along coastal California. As a result, the mean centre of the species distribution shifted south by an estimated 895 km between 1980 and 2010. Mechanisms underlying this shift require further study but we hypothesize that it may be related to a change in the abundance and availability of their forage fish prey base. Since the mid-1980s, the Pacific sardine stock off the California coast increased from a few thousand metric tonnes to over two million. At the same time both the abundance and availability of Pacific herring declined in the Salish Sea. Studies are needed to examine this hypothesis further and additional consideration should be directed at other changes in the marine environment that may have contributed to a range shift.

Highlights

  • Estimating population trends and identifying mechanisms underlying them are key tasks of population and conservation biologists [1]

  • We used a hierarchical Bayesian approach applied to 36 yrs of Audubon Christmas Bird Count (CBC) data to examine the decline of western grebes (Aechmophorus occidentalis) in the former core of their non-breeding range in the Salish Sea of British Columbia and Washington state [9]

  • Between the first and last ten years of this study, the addition of new circles ranged from a 1.14 fold increase in northern California to a 1.71 fold increase in the southwestern states

Read more

Summary

Introduction

Estimating population trends and identifying mechanisms underlying them are key tasks of population and conservation biologists [1]. Much of our knowledge about population ecology has been gained by focusing on species at single study sites, typically during the breeding period (reviewed in [2]). Citizen science data has facilitated analyses of ecological processes operating at broad spatial scales, including the environmental conditions that shape species distributions [3] and the influence of disease and climate on regional population dynamics [4], [5], [6]. The incorporation of hierarchical models under a Bayesian framework have provided a further advantage by more precisely estimating population trends and the factors influencing them while accounting for the sources of variance typical in citizen science data [5], [8]. We used a hierarchical Bayesian approach applied to 36 yrs of Audubon Christmas Bird Count (CBC) data to examine the decline of western grebes (Aechmophorus occidentalis) in the former core of their non-breeding range in the Salish Sea of British Columbia and Washington state [9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call