Abstract

Cardiac signaling pathways functionally important in the heart's response to exercise often protect the heart against pathological stress, potentially providing novel therapeutic targets. However, it is important to determine which of these pathways can be feasibly targeted invivo. Transgenic overexpression of exercise-induced CITED4 has been shown to protect against adverse remodeling after ischemia/reperfusion injury (IRI). Here we investigated whether somatic gene transfer of CITED4 in a clinically relevant time frame could promote recovery after IRI. Cardiac CITED4 gene delivery via intravenous AAV9 injections in wild type mice led to an approximately 3-fold increase in cardiac CITED4 expression. After 4weeks, CITED4-treated animals developed physiological cardiac hypertrophy without adverse remodeling. In IRI, delivery of AAV9-CITED4 after reperfusion resulted in a 6-fold increase in CITED4 expression 1week after surgery, as well as decreased apoptosis, fibrosis, and inflammatory markers, culminating in a smaller scar and improved cardiac function 8weeks after IRI, compared with control mice receiving AAV9-GFP. Somatic gene transfer of CITED4 induced a phenotype suggestive of physiological cardiac growth and mitigated adverse remodeling after ischemic injury. These studies support the feasibility of CITED4 gene therapy delivered in a clinically relevant time frame to mitigate adverse ventricular remodeling after ischemic injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.