Abstract

Different antidepressants often target common serotonergic and dopaminergic systems. However, antidepressants are not 100% effective suggesting that there are still multiple cellular mechanisms contributing to depression. Antidepressant responses by novel compounds are typically identified in preclinical models using the Tail Suspension Test (TST), a behavioral stress model that measures immobility time after exposure to an inescapable environment. The TST can predict chronic antidepressant efficacy after acute administration, where effective antidepressants decrease immobility time. Although the predictive validity of the TST is well established, the cellular mechanisms underlying the antidepressant‐driven immobility responses remain unknown. The purpose of this study is to identify the central nervous system cellular pathways that respond to the TST. Two antidepressants will be used in this study: olanzapine, and citalopram, which target the GABA and serotonin systems, respectively. Common pathways mediating the immobility effects of these antidepressants will be identified by immunohistological analysis using phosphorylated extracellular signal‐related kinases as markers of neuronal activity. What was found was that the phosphorylation of extracellular regulated kinases was a mediating step to citalopram's mechanism in decreasing immobility time. The implications of this study include the identification of cellular pathways activated by acute antidepressant treatment, the minimum cellular pathways that are necessary for efficacious therapeutic effects, and facilitating the synthesis of compounds that properly combat depression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.