Abstract
Several eukaryotic cellular proteins recognize DNA modified by the anticancer drug cisplatin (cis-diamminedichloroplatinum(II) or cis-DDP); among these proteins is a class of DNA-binding molecules containing the HMG (high-mobility group) box DNA recognition motif. We have previously reported the extraordinarily high binding activity to cisplatin adducts by human upstream binding factor (hUBF), an HMG box containing transcription factor that stimulates ribosomal RNA synthesis (Treiber et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 5672-5676). In the present study, we discovered that (1) hUBF interacted selectively with DNA lesions formed by therapeutically effective platinum compounds [Pt(en)Cl2] and [Pt(dach)Cl2], in addition to the lesions formed by cis-DDP, suggesting a possible association with their anticancer effect; (2) multiple HMG boxes contributed additively to the hUBF-adduct interaction, providing a possible explanation for the unusually high affinity of hUBF for cis-DDP adducts as compared to the lower affinities of other HMG box proteins; and (3) ribosomal RNA transcription in a reconstituted system is specifically inhibited in the presence of cis-DDP adducts. In this third experiment, a ratio of adducts/promoter of approximately 4:1 completely abolished the transcription activated by hUBF. Taken together, these data lend support to the view that transcription factors involved in cellular growth regulation, such as ribosomal RNA transcription, may be hijacked by cis-DDP adducts resulting in functional inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.