Abstract

Cis -diammininedichloroplatinum(II) (cisplatin or cis -DDP) is a DNA-damaging agent that is widely used in cancer chemotherapy. Cisplatin crosslinks DNA and the resulting adducts interact with proteins that contain high-mobility-group (HMG) domains, such as UBF(upstream binding factor). UBF is a transcription factor that binds to the promoter of ribosomal RNA (rRNA) genes thereby supporting initiation of transcription by RNA polymerase I. Here we report that cisplatin causes a redistribution of UBF in the nucleolus of human cells, similar to that observed after inhibition of rRNA synthesis. A similar redistribution was observed for the major components of the rRNA transcription machinery, namely TBP, TAFIs and RNA polymerase I. Furthermore, we provide for the first time direct in vivo evidence that cisplatin blocks synthesis of rRNA, while activity of RNA polymerase II continues to be detected throughout the nucleus. The clinically ineffective trans isomer (trans -DDP) does not alter the localization of either UBF or other components of the RNA polymerase I transcription machinery. These results suggest that disruption of rRNA synthesis, which is stimulated in proliferating cells, plays an important role in the clinical success of cisplatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call