Abstract

ObjectiveCisplatin, a platinum-based anticancer drug, produces reactive oxygen species (ROS) in many cell types and induces mechanical allodynia in the hands and/or feet (chemotherapy-induced painful neuropathy: CIPN). In this study, we examined the possibility of inducing neuropathy in the oral region using oral keratinocytes and rats. MethodsHuman oral keratinocytes (HOKs) were used to evaluate ROS generation after cisplatin application by a ROS-reactive fluorescent assay. In rats, after cisplatin administrations (two times), the trigeminal ganglion (TG) was investigated by electron microscopy and quantitative RT-PCR. Using our proprietary assay system, oral pain-related behaviors were observed in cisplatin-treated rats. ResultsIn rats, cisplatin administration reduced food intake and body weight. In electron microscopic analysis, glycogen granules in the TG were depleted following administration, although organelles were intact. In HOK cells, cisplatin significantly increased ROS generation with cell death, similar to glycolysis inhibitors. Cisplatin administration did not show any effects on Trpa1 mRNA levels in the TG. However, the same procedure induced hypersensitivity to mechanical stimulation and the TRPA1 agonist allyl isothiocyanate in the oral mucosa. Mechanical hypersensitivity was inhibited by the antioxidative drug α-lipoic acid and the TRPA1 antagonist HC-030031, similar to that of the hind paw. ConclusionThe present findings suggest that cisplatin induces TRPA1-mediated CIPN due to ROS generation in the oral region. This study will provide a better understanding of persistent oral pain in cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.