Abstract

Cisplatin causes apoptosis of DRG neurons in vitro and in vivo that can be prevented by high dose NGF. Design of a neuronal rescue strategy for patients receiving cisplatin will be facilitated by knowledge of the mechanism by which cisplatin causes DRG death. Inhibition of the fas receptor/ligand interaction prevents apoptosis in certain cancer cell lines treated with DNA damaging agents, including cisplatin. We demonstrated that killing curves from mice lacking a functional fas receptor and wild-type controls were not different over a wide range of therapeutically relevant concentrations. However, cisplatin treatment of DRG caused redistribution of cytosolic bax and mitochondrial release of cytochrome c. Bax redistribution was prevented by high dose NGF. This demonstrates for the first time that cisplatin does not signal for death via the fas pathway, but it does initiate the mitochondrial stress pathway in neurons and that NGF blocks death upstream of bax redistribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.