Abstract

Cyclosporin is an 11-amino acid cyclic peptide with pharmacologically valuable properties which has a variety of actual and potential applications. Its activity relies on the cell membrane permeability which, in turn, depends on the structure of cyclosporin and its ability to change the conformation. In this work, conformational exchange processes occurring in cyclosporin C were studied using one- and two-dimensional nuclear magnetic resonance spectroscopy. The free energy barrier separating two major conformers observed in polar solution (acetonitrile) was found to be 77 ± 2 kJ/mol. Less populated conformation states are also present in the solution, which agrees with the ease of formation of multiple forms revealed by MD simulations of cyclosporin C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call