Abstract

Expression of the wnt8 gene is the key transcriptional motivator of an intercellular signaling loop which drives endomesoderm specification forward early in sea urchin embryogenesis. This gene was predicted by network perturbation analysis to be activated by inputs from the blimp1/krox gene, itself expressed zygotically in the endomesoderm during cleavage; and by a Tcf1/β-catenin input. The implication is that zygotic expression of wnt8 is stimulated in neighboring cells by its own gene product, since reception of the Wnt8 ligand causes β-catenin nuclearization. Here, the modular cis-regulatory system of the wnt8 gene of Strongylocentrotus purpuratus was characterized functionally, and shown to respond to blockade of both Blimp1/Krox and Tcf1/β-catenin inputs just as does the endogenous gene. The genomic target sites for these factors were demonstrated by mutation in one of the cis-regulatory modules. The Tcf1/β-catenin and Blimp1/Krox inputs are both necessary for normal endomesodermal expression mediated by this cis-regulatory module; thus, the genomic regulatory code underlying the predicted signaling loop thus resides in the wnt8 cis-regulatory sequence. In a second regulatory region, which initiates expression in micromere and macromere descendant cells early in cleavage, Tcf1 sites act to repress ectopic transcription in prospective ectoderm cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.