Abstract

We find that ectopic expression of Delta or Serrate in neurons within developing bristle organs is capable of non-autonomously inducing the transformation of the pre-trichogen cell into a tormogen cell in a wide variety of developmental contexts. The frequencies at which Delta can induce these transformations are dependent on the level of ectopic Delta expression and the levels of endogenous Notch signalling pathway components. The pre-trichogen cell becomes more responsive to Delta- or Serrate-mediated transformation when the level of endogenous Delta is reduced and less responsive when the dosage of endogenous Delta is increased, supporting the hypothesis that Delta interferes autonomously with the ability of a cell to receive either signal. We also find that a dominant-negative form of Notch, ECN, is capable of autonomously interfering with the ability of a cell to generate the Delta signal. When the region of Notch that mediates trans-interactions between Delta and the Notch extracellular domain is removed from ECN, the ability of Delta to signal is restored. Our findings imply that cell-autonomous interactions between Delta and Notch can affect the ability of a cell to generate and to transduce a Delta-mediated signal. Finally, we present evidence that the Fringe protein can interfere with Delta- and Serrate-mediated signalling within developing bristle organs, in contrast to previous reports of the converse effects of Fringe on Delta signalling in the developing wing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.