Abstract
Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.