Abstract

The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.