Abstract

We developed an algorithm called Cmask (Cirrus cloud mask) for cirrus cloud detection in Landsat 8 imagery using time series of Cirrus Band (1.36–1.39 μm) observations. For each pixel, a harmonic model, which includes a water vapor regressor, based on all available Cirrus Band observations is estimated using the Robust Iteratively Reweighted Least Squares (RIRLS) regression approach, and pixels affected by cirrus cloud are identified by comparing model predictions and actual satellite observations of the Cirrus Band Top-Of-Atmosphere (TOA) reflectance. Furthermore, we analyzed the effect of increasing Cirrus Band TOA reflectance on the surface reflectance of the Blue, Green, Red, Near Infrared (NIR), and two Shortwave Infrared (SWIR) (SWIR 1 and SWIR 2) Bands based on a set of globally distributed random samples. The goal of this study is to answer the question of what are cirrus clouds in the context of a Landsat observation, or more specifically, when should we identify a pixel as cirrus cloud such that we know the reflectance in the other spectral bands has been seriously affected by cirrus clouds. The challenge is to then develop a simple and operational algorithm for accurate detection of cirrus clouds in Landsat 8 images. The Cmask algorithm reduced almost by half the errors found in the U.S. Geological Survey (USGS) Quality Assessment (QA) Band for distinguishing cirrus cloud and clear observations (8% versus 15% error).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.