Abstract

A method of retrieving cloud microphysical properties using combined observations from both cloud radar and lidar is introduced. The description of the lidar‐radar model accounts for nonspherical effects of the ice crystals, with a treatment for multiple scattering and Mie effects. This retrieval makes use of an improvement to the traditional optimal estimation retrieval method, whereby a series of corrections are applied to the state vector during the search for an iterative solution. This allows faster convergence to a solution and is less processor intensive. The retrieval method is applied to radar and lidar observations from the CRYSTAL‐FACE experiment, and vertical profiles of ice crystal characteristic diameter, number concentration, and ice water content are retrieved for a cirrus cloud layer observed 1 day of that experiment. Empirical relationships between ice water content and radar reflectivity as well as between particle number concentrations and characteristic diameter are also examined. The results indicate that a distinct and robust relationship exists between the latter two parameters, offering insight into the nature of cirrus microphysical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.