Abstract

As a set of distinct syndromes, focal segmental glomerulosclerosis (FSGS) is the most common cause of adult nephrotic syndrome with diverse mechanisms. We recently found that expression of the circular RNA circZNF609 is increased in renal biopsies of lupus nephritis patients. In the present study, we aimed to determine whether circZNF609 participates in the pathogenesis of FSGS in mice given Adriamycin. In FSGS mice, circZNF609 was upregulated while miR-615-5p was downregulated in FSGS mice analyzed by qPCR and fluorescence in situ hybridization (FISH). Expression of podocyte proteins Wilms tumor 1 (WT1) and podocin were decreased, while expression of collagen 1 (COL1) and transforming growth factor-beta1 (TGF-β1) were increased on Western blotting. Renal circZNF609 levels were positively correlated and miR-615-5p levels were negatively correlated with the degree of podocyte injury and renal fibrosis. Importantly, circZNF609 and miR-615-5p co-localized to glomeruli and tubules on FISH. Perfect match seeds were found between circZNF609 and miR-615-5p and COL1 mRNA, leading us to explore mechanisms of circZNF609 in bovine serum albumin (BSA) stimulating HK-2 cells, which model the toxicity of proteinuria on tubular cells. In vitro studies, circZNF609 increased and miR-615-5p decreased after BSA treatment and were negatively correlated with each other. COL1 and TGF-β1 were both upregulated and negatively correlated with miR-615-5p. Lastly, circZNF609 expression increased in glomeruli and tubules of FSGS patient renal biopsies. We conclude that circZNF609 may play an important role in FSGS by sponging miR-615-5p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call