Abstract

A number of non-coding circular RNAs (circRNAs) have recently been implicated in the modulation of gene expression in cancer models. We therefore sought to explore if circZNF236 has a role in oral squamous cell carcinoma (OSCC). We first examined circZNF236 expression in 32 pairs of OSCC and noncancerous tissues. We then investigated a functional role for circZNF236 using knockdown and overexpression approaches in OSCC cancer cell lines. Cell counting kit-8, wound healing, Transwell, and flow cytometry were employed to assess circZNF236 function in vitro. The association between circZNF236 and miR-145-5p, or that between miR-145-5p and malignant brain tumor domain containing 1 (MBTD1) was predicted by bioinformatics and demonstrated by dual-luciferase reporter assays, RNA pull-down assays as well as RNA immunoprecipitation (RIP) assays. A mouse OSCC xenograft model was employed to demonstrate the impacts of circZNF236 inhibition on tumor development in vivo. OSCC tissues and cells had higher levels of circZNF236 expression compared with normal controls. Furthermore, high circZNF236 levels in patients with OSCC correlated with a poor prognosis. CircZNF236 silencing decreased the malignant properties of OSCC cells and suppressed OSCC tumor formation in the mouse model. We then noticed that miR-145-5p can be regulated by circZNF236, and that circZNF2361 promoted OSCC development by absorbing miR-145-5p and consequently upregulating MBTD1 expression. CircZNF236 modulates OSCC via the miR-145-5p/MBTD1 axis. These results support the potential of circZNF236 as a treatment target for OSCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call