Abstract

Colorectal adenocarcinomas are inherently resistant to anthracyclines and other topoisomerase-II inhibitors. Resistance to doxorubicin of colon cancer cells (Caco2) depends on 2 main mechanisms. The first is typical multi-drug resistance, characterized by the mdr1 gene and its product the P170 membrane glycoprotein. P170 effluxes anthracyclines out of cancer cells and is antagonized in vitro by verapamil. The second mechanism, which develops when cell-culture density increases, we have designated confluence-dependent resistance. Confluence-dependent resistance depends on the reduced topoisomerase II content of the G0/G1-phase cells which accumulate in the confluent population. We show here that short treatments of confluent Caco2 cells with slightly toxic concentrations of DNA-damaging agents (cisplatin, melphalan or mitomycin C) produced a transient accumulation of cells in S- and G2/M-phases of the cell cycle. Concomitantly with the increase in the S-phase population, the topoisomerase II cellular level and the sensitivity of cells to doxorubicin were greatly enhanced. Overcoming confluence-dependent resistance through S-phase accumulation and inhibition of multi-drug resistance by verapamil were fully additive, and a nearly complete reversal of confluent Caco2 cells' resistance to doxorubicin was obtained when both strategies were combined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.