Abstract

The planted p-spin interaction model is a paradigm of random-graph systems possessing both a ferromagnetic phase and a disordered phase with the latter splitting into many spin-glass states at low temperatures. Conventional simulated annealing dynamics is easily blocked by these low-energy spin-glass states. Here we demonstrate that actually this planted system is exponentially dominated by a microcanonical polarized phase at intermediate energy densities. There is a discontinuous microcanonical spontaneous symmetry breaking transition from the paramagnetic phase to the microcanonical polarized phase. This transition can serve as a mechanism to avoid all the spin-glass traps, and it is accelerated by the restart strategy of microcanonical random walk. We also propose an unsupervised learning problem on microcanonically sampled configurations for inferring the planted ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.