Abstract

The analytical solution for the problem of a circumferential inner surface crack in an elastic, infinitely long composite hollow cylinder, made of two concentric perfectly bonded transversely isotropic cylinders is considered. Uniform axial loading and thermal loading in the form of a sudden cooling on the inner boundary are considered. Out of 10 material parameters involved, two bimaterial parameters and three material parameters for each layer upon which the stress intensity factor depends under uniform loading, are identified. The problem is reduced to a singular integral equation that is solved numerically. Stress intensity factors are presented for various values of material and geometric parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.