Abstract

Rotating instability (RI) of a single-stage axial compressor was studied by both numerical and experimental methods. A circumferential mode decomposition method based on spatial Fourier transform was used to analyze the circumferential pressure distribution of the tip flow. Circumferential mode characteristics were captured both on blade passing frequency (BPF) and rotational instability frequency (RIF) under several flow conditions. The characteristic spectrum of RI with broadband hump existed in a large range of flow conditions. Both frequency range and dominant circumferential mode number decreased with flow rate, while circumferential angular velocity of RI increased at the same time. On the other hand, a proper orthogonal decomposition (POD) method was applied to obtain the mode component of tip flow. The feature of tip flow was analyzed with the help of POD mode vector and mode amplitude. The influence of the decrease on the spatial monitor points in POD method was analyzed using CFD data to analysis the potential error from experimental results. It is expected to deeply understand the mechanism of the rotating instability and rotor-stator interaction phenomenon by spatial FT and POD methods in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.