Abstract

Abstract Tidal disruption events, which occur when a star is shredded by the tidal field of a supermassive black hole (SMBH), provide a means of fuelling black hole accretion. Here we show, using a combination of three-body orbit integrations and hydrodynamic simulations, that these events are also capable of generating circumbinary rings of gas around tight SMBH binaries with small mass ratios. Depending on the thermodynamics, these rings can either fragment into clumps that orbit the binary, or evolve into a gaseous circumbinary disc. We argue that tidal disruptions provide a direct means of generating circumbinary discs around SMBH binaries and, more generally, can replenish the reservoir of gas on very small scales in galactic nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.