Abstract

The small-scale statistical properties of velocity circulation in classical homogeneous and isotropic turbulent flows are assessed through a modeling framework that brings together the multiplicative cascade and the structural descriptions of turbulence. We find that vortex structures exhibit short-distance repulsive correlations, which is evidenced when they are "tomographically" investigated, by means of planar cuts of the flow, as two-dimensional vortex gases. This phenomenon is suggested from model improvements which allow us to obtain an accurate multiscale description of the intermittent fluctuations of circulation. Its crucial new ingredient, the conjectured hard disk behavior of the effective planar vortices, is then found to be strongly supported from a study of their spatial distributions in direct numerical simulations of the Navier-Stokes equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call