Abstract
Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.
Highlights
Symbiotic associations are widespread in nature and can take different forms
To gain insight into the circulation of the cultivable S. symbiotica bacterium (CWBI-2.3T) between the aphid Aphis fabae and the host plants Vicia faba, we experimentally investigated whether cultivable S. symbiotica was able to transit from the soil to the plants, and be acquired by aphids feeding on these plants
We investigated the ability of the cultivable S. symbiotica strain to circulate in aphid-host plant system
Summary
Symbiotic associations are widespread in nature and can take different forms. Some symbiotic microorganisms are harmful (parasites), while others can be beneficial for their hosts (mutualists) (Kikuchi and Fukatsu, 2014). Symbiotic bacteria can play a crucial role in the evolution and ecology of their hosts by bringing new beneficial biological properties, while at the same time benefiting from food, means of dispersal or multiplication (Duron and Hurst, 2013; Oliver et al, 2014). Explaining how these associations are formed and spread through insect populations remains one of the most fundamental questions within the field of symbiosis research
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.