Abstract

Abstract Expanding earlier studies on the boreal spring and autumn rainy seasons in equatorial East Africa, pending challenges on the mechanisms of rainfall variability, are investigated. Eastward pressure gradient and slack south Indian Ocean trade winds allow surface equatorial westerlies in spring and autumn. Complementing that, upper-tropospheric easterlies are required for the development of a zonal vertical circulation cell along the Indian Ocean equator. Because of the summer warming and high stand of upper-tropospheric topography over South Asia, strong upper-tropospheric easterlies over the tropical northern and equatorial Indian Ocean persist from summer into autumn, thus allowing the development of a zonal vertical circulation cell. By contrast, the winter cooling entails low stand of upper-tropospheric topography in the north, thus hindering easterlies over the equator. Consequently, an equatorial zonal circulation cell does not develop in boreal spring. The equatorial zonal circulation cell, with subsidence over East Africa, strongly controls the boreal autumn rains, as evidenced in their tight correlation with the equatorial westerlies. In a related vein, rain gauge stations show much shared variance in boreal autumn as compared to spring. Plausibly consistent with this, boreal autumn rather than spring has brought the extreme flood and drought disasters in the course of the past half-century.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call