Abstract
Insect wings are living, flexible structures composed of tubular veins and thin wing membrane. Wing veins can contain hemolymph (insect blood), tracheae, and nerves. Continuous flow of hemolymph within insect wings ensures that sensory hairs, structural elements such as resilin, and other living tissue within the wings remain functional. While it is well known that hemolymph circulates through insect wings, the extent of wing circulation (e.g., whether flow is present in every vein, and whether it is confined to the veins alone) is not well understood, especially for wings with complex wing venation. Over the last 100 years, scientists have developed experimental methods including microscopy, fluorescence, and thermography to observe flow in the wings. Recognizing and evaluating the importance of hemolymph movement in insect wings is critical in evaluating how the wings function both as flight appendages, as active sensors, and as thermoregulatory organs. In this review, we discuss the history of circulation in wings, past and present experimental techniques for measuring hemolymph, and broad implications for the field of hemodynamics in insect wings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.