Abstract

A response of the circulation in the Japan/East Sea (JES) to different kinds of wind forcing is studied, with the emphasis on the warm season, using a primitive equation oceanic model. Wind forcing is based on typical patterns obtained from complex empirical orthogonal functions of 1°-gridded NCEP/NCAR 6 h winds for 1998–2005. These patterns are distinguished by a prevailing wind direction. Northwestern wind and strong cyclonic (C) curl prevail in winter, while a variety of patterns occur in the warm season, differing in the wind direction and curl. Three model runs are performed to examine the circulation in response to a prevailing C wind stress curl or an alternating C and anticyclonic (AC) curl or a strong C curl in the warm season. The simulated features are consistent with the observational evidence, in particular with thermal fronts and frequent eddy locations derived from multi-year infrared satellite imagery. The simulated C circulation intensifies and the subarctic region extends southward with the strengthening of a summer C wind stress curl over the JES. Variability of Subarctic Front (SF) in the western JES (between 130°E and 133°E) is strongly affected by summer wind stress curl. Forcing by an AC curl tends to shift SF northward, while SF shifts to the south under the forcing by a C curl, reaching the southern Ulleung Basin in the case of the strong C curl. In the northwestern JES (off Peter the Great Bay, Russia, and North Korea), the SF northwestern branch (NWSF) is simulated. It is a known feature in autumn and early winter and can also occur in the warm season. The simulation results suggest an AC wind stress curl as the forcing of the formation of the NWSF in the warm season. The Siberia Seamount and sharply bending coastline near Peter the Great Bay facilitate partial separation of the Primorye (Liman) Current from the coast. The wind stress curl can be an additional forcing of the Tsushima Warm Current (TWC) branching off the Korea Strait to the East Korea Warm Current (EKWC) and the offshore branch (OB). In the warm season, the simulated TWC bifurcation occurs farther north, the EKWC is strong, and the OB is weak under the forcing of the AC wind stress curl. The EKWC is weak and the OB is strong under the forcing of the strong C wind stress curl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.