Abstract

We investigate the sensitivity of the ocean circulation in the Filchner Trough to changes in the large-scale oceanic environment and its impact on the mass balance of the Filchner Ice Shelf, Antarctica. Three experiments with a three-dimensional ocean model describe (i) the current situation, (ii) a scenario with increased ocean temperatures, and (iii) a scenario with reduced sea-ice formation rates on the adjacent continental shelf. in the final discussion brief results of a combined scenario with increased ocean temperatures and reduced sea-ice formation are presented. The changes from the current situation affect the circulation in the Filchner Trough, and melting and freezing processes beneath the ice shelf. The latter affect the amount and properties of Ice Shelf Water (ISW), a component of Antarctic Bottom Water. Net basal melt rates provide an overall measure for the changes: while the control run yields 0.35 m a−1 net melting averaged over the Filchner Ice Shelf area, the warming scenario results in a more than twofold increase in ice-shelf mass loss. Reduced production of High Salinity ShelfWater due to smaller sea-ice formation rates in the second scenario leads, on the other hand, to a decrease in basal mass loss, because the deep cavity is less well ventilated than in the control run. ISW is cooled and the ice shelf is stabilized under this scenario, which is arguably the more likely development in the southern Weddell Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call