Abstract

The performance of polyclonal monospecific rabbit anti-sera raised against synthetic peptides derived from conserved HCV sequences of genotype 4 was evaluated for efficient detection of viral core and E1 antigens in circulating immune complexes (ICs) precipitated from 65 serum samples of HCV patients. The infection was established in those patients by the presence of HCV RNA in their sera. A novel enzyme-linked immunosorbent assay (ELISA) was developed for the detection of HCV core and E1 antigen in serum samples. Western blot analyses were used to demonstrate the presence of the core and E1 target antigen in serum samples. The mean OD readings of both core and E1 antigens were significantly higher (P < 0.05) among the viremic patients when compared to controls. Also a significant positive correlation (P < 0.05, r = 0.98) between the values of both core and E1 was recorded. Western blot analysis based on monospecific antibodies against core and E1 recognized the 38-kDa and 88 -kDa bands respectively in the sera of all infected patients. No specific reaction was observed with the sera from uninfected individuals. Interestingly the results of core and E1 antigen levels displayed no positive correlation with the HCV copy number as measured by bDNA. Liver enzymes (ALT and AST) showed a moderate positive correlation (r = 0.44 and 0.47 respectively) with the viral core antigens level. The same trend holds true for E1 (r = 0.43 and 0.64 for ALT and AST respectively). HCV load in infected patients revealed extremely poor correlation with serum ALT and AST levels (r = 0.022 and 0.002 respectively). In conclusion we present a new combination of serological tools correlating with liver enzyme levels that could be utilized as supplemental tests to viral load testing. Also, a sensitive and specific immunoassay was developed for the detection of HCV core and E1 in human serum. This test can be applied for laboratory diagnosis of HCV infection.

Highlights

  • The genome of Hepatitis C Virus (HCV) consists of 5' and frame (ORF) encoding structural and non-structural pro

  • HCV core and E1 optical density (OD) levels in the precipitated ICs from HCV patients' sera Precipitated immune complexes from 20 sera of healthy subjects were included as means of negative controls

  • enzyme-linked immunosorbent assay (ELISA) assay based on the detection of the target HCV core and E1 antigen in serum was developed for the diagnosis of HCV infection

Read more

Summary

Introduction

The genome of Hepatitis C Virus (HCV) consists of 5' and frame (ORF) encoding structural and non-structural pro-. On the other hand for a developing country like Egypt where genotype 4 is prevailing [21], there is an increasing need for a supplemental assay besides the costly molecular quantification of viral RNA load for sensitive evaluation of the severity of HCV disease before treatment or during post therapeutic follow ups. This would help better assessment of early response to the expensive peg-interferon/ribavirin combined therapy. The long term objective was to enhance the cost effectiveness of therapy via better monitoring of patients' response

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call