Abstract

Personalized cancer medicine requires the development of tumor-specific biomarkers to optimize selection of targeted therapies and to better assess response to therapy. Current efforts in several tumor types have shown that patients in whom circulating tumor cells (CTCs) are detected have an inferior prognosis relative to those in whom CTCs are not detected and that the elimination or decrease of CTCs following treatment is associated with improved clinical outcomes. Technological advances in the detection, isolation, capture, and characterization of CTCs from phlebotomy samples obtained in a routine clinical practice setting have enabled the evaluation of different CTC biomarkers. Unmet needs in cancer diagnosis and treatment where CTC biomarkers have been studied include determining prognosis, assessing the effects of treatment, and as a source of tumor for the biologic identification and characterization of determinants to predict sensitivity to one form of treatment versus another and to understand mechanisms of treatment resistance.At present, there is no single definition of a CTC and no single CTC "biomarker." Rather, multiple assays (tests) are in development for CTC biomarkers. However, before the role of any biomarker in medical decision making can be determined, it is essential that the assays used to measure the biomarker are analytically validated in a sequence of trials to generate the evidence to support the biomarker's use in the given context of use. It is against this background that this review focuses on the process of developing CTC biomarker assays, with the objective of outlining the necessary steps to qualify specific CTC tests for medical decision making in clinical practice or drug development. The potential for point-of-care tests is clear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call