Abstract

Vascular endothelial growth factor (VEGF) performs as an angiogenic and permeability factor in ovarian cancer, and its overexpression has been associated with poor prognosis. However, models to study its role as a marker of tumor progression are lacking. We generated xenograft variants derived from the A2780 human ovarian carcinoma (1A9), stably transfected with VEGF(121) in sense (1A9-VS-1) and antisense orientation (1A9-VAS-3). 1A9, 1A9-VS-1, and 1A9-VAS-3 disseminated in the peritoneal cavity of nude mice, but only 1A9-VS-1, the VEGF(121)-overexpressing tumor variant, produced ascites. Tumor biopsies from 1A9-VS-1 showed alterations in the vascular pattern and caused an angiogenic response in the chorioallantoic membrane assay. A significant level of soluble VEGF was detectable in the plasma of mice bearing 1A9-VS-1 even at an early stage of tumor growth. Plasma VEGF correlated positively with tumor burden in the peritoneal cavity and ascites accumulation. Cisplatin reduced the tumor burden and ascites in mice bearing 1A9-VS-1; the response was associated with a significant decrease of VEGF in plasma. This 1A9-VS-1 xenograft model reproduces the behavior of human ovarian cancer by growing in the peritoneal cavity, being highly malignant, and producing ascites. Plasma VEGF as a marker of tumor progression offers a valuable means of detecting early tumor response and following up treatments in an animal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.