Abstract

BackgroundCoronary heart disease (CHD) is a major complication of type 2 diabetes mellitus (T2DM), which causes an adverse prognosis. There is an urgent need to explore effective biomarkers to evaluate the patients’ adverse outcomes.ObjectiveThis study aimed to identify a novel indicator for screening T2DM and T2DM-CHD and predicting adverse prognosis.Materials and methodsThe study enrolled 52 healthy individuals, 85 T2DM patients, and 97 T2DM patients combined with CHD. Serum miR-199-3p levels in all study subjects were detected with PCR, and its diagnostic significance was evaluated by receiver operating curve (ROC) analysis. The involvement of miR-199-3p in disease development was assessed by the Chi-square test, and the logistic regression analysis was performed to estimate the risk factor for major adverse cardiovascular events (MACE) in T2DM-CHD patients.ResultsSignificant downregulation of miR-199-3p was observed in the serum of both T2DM and T2DM-CHD patients, which discriminated patients from healthy individuals and distinguished T2DM and T2DM-CHD patients. Reduced serum miR-199-3p was associated with the increasing blood glucose, glycated hemoglobin (HbA1c), and homeostasis model assessment-insulin resistance index (HOMA-IR) of T2DM patients and the increasing triglycerides (TG), low-density lipoprotein (LDL), fibrinogen, and total cholesterol (TC) and decreasing high-density lipoprotein (HDL) of T2DM-CHD patients. miR-199-3p was also identified as a biomarker predicting the occurrence of MACE.ConclusionDownregulated miR-199-3p could screen the onset of T2DM and its complication with CHD. Reduced serum miR-199-3p was associated with the severe development of T2DM and T2DM-CHD and predicted the adverse outcomes of T2DM-CHD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call