Abstract

Exposure to polycyclic aromatic hydrocarbons (PAHs) produced from various pyrogenic and petrogenicsources in the environment has been linked to a variety of toxic effects in the human body. Genome-wide analyses have shown that microRNAs (miRNAs) can function as novel and minimally invasive biomarkers of environmental exposure to PAHs. The objective of this study is to explore miRNA signatures associated with early health effects in response to chronic environmental exposure to PAHs. We systematically searched Scopus and PubMed databases for studies related to exposure of PAHs with changes in miRNA expression patterns that represent early health effects in the exposed population. Based on previous studies, we included 15 cell-based and 9 each of animal model and human population-based studies for assessment. A total of 11 differentially expressed PAH-responsive miRNAs were observed eachin two or morecell-based studies (miR-181a and miR-30c-1), animal model studies (miR-291a and miR-292), and human population-based studies (miR-126, miR-142-5p, miR-150-5p, miR-24-3p, miR-27a-3p, miR-28-5p, and miR-320b). In addition, miRNAs belonging to family miR-122, miR-199, miR-203, miR-21, miR-26, miR-29, and miR-92 were found to be PAH-responsivein both animal model and cell-based studies; let-7, miR-126, miR-146, miR-30, and miR-320 in both cell-based and human population-based studies; and miR-142, miR-150, and miR-27 were found differentially expressedin both animal model and human population-based studies. The only miRNA whose expression was found to be altered in all the three groups of studies is miR-34c. Association of environmental exposure to PAHs with altered expression of specific miRNAs indicates that selective miRNAs can be used as early warning biomarkers in PAH-exposed population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call