Abstract

Human life expectancy is influenced not only by longevity assurance mechanisms and disease susceptibility loci but also by the environment, gene-environment interactions, and chance. MicroRNAs (miRNAs) are a class of small noncoding RNAs closely related to genes. Circulating miRNAs have been shown as promising noninvasive biomarkers in the development of many pathophysiological conditions. However, the concentration of miRNA in the circulation may also be affected by environmental factors. We used a next-generation sequencing platform to assess the association of circulating miRNA with life expectancy, for which deaths are due to all causes independent of genes. In addition, we showed that miRNAs are present in 41-year archived plasma samples, which may be useful for both life expectancy and all-cause mortality risk assessment. Plasma miRNAs from nine identical male twins were profiled using next-generation sequencing. The average absolute difference in the minimum life expectancy was 9.68 years. Intraclass correlation coefficients were above 0.4 for 50% of miRNAs. Comparing deceased twins with their alive co-twin brothers, the concentrations were increased for 34 but decreased for 30 miRNAs. Identical twins discordant in life expectancy were dissimilar in the majority of miRNAs, suggesting that environmental factors are pivotal in miRNAs related to life expectancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.