Abstract
Background and Aims. Dysregulation of miR-223 was recently linked to various diseases associated with systemic inflammatory responses such as type 2 diabetes, cancer, and bacterial infections. However, contradictory results are available on potential alterations of miR-223 serum levels during sepsis. We thus aimed to evaluate the diagnostic and prognostic value of miR-223 serum concentrations in patients with critical illness and sepsis. Methods. We used i.v. injection of lipopolysaccharide (LPS) as well as cecal pole ligation and puncture (CLP) for induction of polymicrobial sepsis in mice and measured alterations in serum levels of miR-223. These results from mice were translated into a large and well-characterized cohort of critically ill patients admitted to the medical intensive care unit (ICU). Finally, results from analysis in patients were correlated with clinical data and extensive sets of routine and experimental biomarkers. Results. Although LPS injection induced moderately elevated serum miR-223 levels in mice, no significant alterations in miR-223 serum levels were found in mice after CLP-induced sepsis. In accordance with these results from animal models, serum miR-223 levels did not differ between critically ill patients and healthy controls. However, ICU patients with more severe disease (APACHE-II score) showed moderately reduced circulating miR-223. Strikingly, no differences in miR-223 levels were found in critically ill patients with or without sepsis, and serum levels of miR-223 did not correlate with classical markers of inflammation or bacterial infection. Finally, low miR-223 serum levels were moderately associated with an unfavorable prognosis of patients during the ICU treatment but did not predict long-term mortality. Conclusion. Recent reports on alterations in miR-223 serum levels during sepsis revealed contradictory results, preventing a potential use of this miRNA in clinical routine. We clearly show that miR-223 serum levels do not reflect the presence of sepsis neither in mouse models nor in a large cohort of ICU patients and do not indicate clinical outcome of critically ill patients. Thus miR-223 serum levels should not be used as a biomarker in this setting.
Highlights
Sepsis represents a major cause of death for critically ill patients during intensive care unit (ICU) treatment [1]
No differences in miR223 levels were found in critically ill patients with or without sepsis, and serum levels of miR-223 did not correlate with classical markers of inflammation or bacterial infection
We clearly show that miR-223 serum levels do not reflect the presence of sepsis neither in mouse models nor in a large cohort of ICU patients and do not indicate clinical outcome of critically ill patients
Summary
Sepsis represents a major cause of death for critically ill patients during intensive care unit (ICU) treatment [1]. A specific deregulation of microRNA miR-223 was described in different disease states associated with a systemic inflammatory response such as bacterial infections or autoimmune diseases This may represent an epiphenomenon of these diseases, recent evidence suggests that miR-223 is actively. To translate our findings from these animal models to human pathogenesis, we analyzed miR-223 serum levels in a large, well-characterized cohort of 221 critically ill patients (with and without sepsis), demonstrating that serum levels of miR-223 do not reflect the presence of septic disease and are not associated with the clinical outcome of patients during intensive care unit treatment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.