Abstract

Aims/hypothesisMetabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case−control studies of middle-aged and older individuals. We aimed to validate existing and identify novel metabolic biomarkers predictive of future diabetes in large cohorts of young adults.MethodsNMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish observational cohorts (baseline age 24–45 years). Associations between baseline metabolites and risk of developing diabetes during 8–15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up.ResultsOut of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts (ORs per 1 SD: 0.59–1.50; p< 0.0009). Among the strongest biomarkers of diabetes risk were branched-chain and aromatic amino acids (OR 1.31–1.33) and triacylglycerol within VLDL particles (OR 1.33–1.50), as well as linoleic n-6 fatty acid (OR 0.75) and non-esterified cholesterol in large HDL particles (OR 0.59). The metabolic biomarkers were more strongly associated with deterioration in post-load glucose and insulin resistance than with future fasting hyperglycaemia. A multi-metabolite score comprised of phenylalanine, non-esterified cholesterol in large HDL and the ratio of cholesteryl ester to total lipid in large VLDL was associated with future diabetes risk (OR 10.1 comparing individuals in upper vs lower fifth of the multi-metabolite score) in one of the cohorts (mean age 31 years).Conclusions/interpretationMetabolic biomarkers across multiple molecular pathways are already predictive of the long-term risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young asymptomatic individuals at increased risk.

Highlights

  • The global prevalence of type 2 diabetes is increasing rapidly, in low- and middle-income countries [1]

  • The ORs of 104 selected metabolic measures with incident type 2 diabetes are shown in Figs 1 and 2; results for the remaining 125 metabolic measures assayed are found in electronic supplementary material (ESM) Fig. 2

  • In meta-analysis of all four cohorts, 113 out of the 229 metabolic measures were robustly associated with incident type 2 diabetes (p< 0.0009) when adjusting for sex, baseline age, BMI and fasting glucose

Read more

Summary

Introduction

The global prevalence of type 2 diabetes is increasing rapidly, in low- and middle-income countries [1]. The risk for developing type 2 diabetes is, to some extent, reflected in current measures of hyperglycaemia and dyslipidaemia; these markers are ineffective for identifying high-risk individuals [6]. This has spurred interest in metabolite profiling technologies, known as metabolomics, to identify biochemical changes occurring before the onset of diabetes to elucidate the pathophysiology and potentially aid risk prediction for better targeted prevention [7, 8]. Multiple case−control studies have identified circulating lipids and metabolites associated with the risk for type 2 diabetes using a range of technological assays, based on MS or NMR [7, 9, 10]. Previous metabolomics studies have commonly involved a modest number of participants in nested case−control settings and have almost exclusively been conducted in middle-aged and older individuals

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.