Abstract

Exosomes mediate cell-cell crosstalk in cancer progression by transferring a variety of biomolecules, including long noncoding RNAs (lncRNAs). Long non-coding RNA urothelial carcinoma-associated (UCA1) is a well-known lncRNA associated with the development and progression of various cancers, including colorectal cancer (CRC). However, the presence of UCA1 in exosomes and the roles and clinical values of exosomal UCA1 in CRC remain unknown. In this study, we systematically analyzed the expression profiles of exosomal lncRNAs in CRC patients using a high-throughput microarray assay. Then, we evaluated the UCA1 expression levels in a series of CRC tissues and the serum exosomes of CRC patients using quantitative real-time PCR. The roles of UCA1 on CRC in vitro and in vivo were investigated by MTT, colony formation, Transwell, quantitative real-time PCR, flow cytometry, and western blotting. The miRNA binding sites of UCA1 were predicted using the miRcode online database, and miR-143 was validated to target UCA1 by dual-luciferase activity assay and AGO2 RNA immunoprecipitation. Finally, the role of exosome-mediated UCA1 was further investigated by co-culturing with CRC cells. This study showed that UCA1 was upregulated in CRC tissues and functioned as an oncogene in CRC. Loss-of-function investigations showed that inhibition of UCA1 suppressed CRC cell proliferation and metastasis in vivo and in vitro. Mechanistically, UCA1 was identified as a miR-143 sponge. We also found that MYO6 was a direct target of miR-1205, which functioned as an oncogene in CRC. Moreover, UCA was also upregulated in the serum exosomes of CRC patients and could transfer UCA1 to CRC cells to increase their abilities of cell proliferation and migration. In conclusion, these data suggest that UCA1 could be an oncogene for CRC and may serve as a candidate target for new therapies in human CRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.